9/10/22, 1:15 PM NTA

CUET UG - 2022 (CANDIDATE RESPONSE SHEET)

Paper/Subject MATHEMATICS/APPLIED MATHEMATICS

Exam Date 18 Aug 2022

Exam Slot 1

Question ID:481301

Section Name:COMPULSORY

Ouestion:

If

$$\int \frac{5x+3}{\sqrt{x^2+4x+10}} \, dx = a\sqrt{x^2+4x+10} + b \log \left| x+2+\sqrt{x^2+4x+10} \right| + C,$$

then value of a - b is:

A 12

B 2

C 8

D 7

Answer Given By Candidate: Not Attempted

Question ID:481302

Section Name: COMPULSORY

Question:

Given that A and B are events such that $A \subset B$

$$A. P(A \cup B) = P(A) + P(B)$$

$$B. P(A \cap B) = P(A) P(B)$$

C.
$$P(B/A) = 1$$

D.
$$P(A \cap B) = P(A)$$

Choose the correct answer from the options given below:

A A only

B B only

C C and D only

D D only

Answer Given By Candidate: C

Question ID:481303

Section Name: COMPULSORY

The probability distribution of number of doublets in two throws of a pair of dice is:

A _	х	0	1	2	
	P(X = x)	<u>1</u> 36	$\frac{10}{36}$	$\frac{25}{36}$	

В	х	0	1	2	
3 2	P(X = x)	1	12	23	
	P(X-X)	36	36	36	

C	х	0	1	1	
	P(X = x)	23	12		
	P(X=x)	36	36	36	

D [х	0	1	2	
	D(V)	25	10	1	
	P(X=x)	36	36	36	

Answer Given By Candidate: Not Attempted

Question ID:481304

Section Name:COMPULSORY

Question:

Slope of tangent to the curve $y = x^3 - 3x^2 - 9x + 7$ at (-1, 12) is :

A -1

B 3

 \mathbf{C} 0

D -3

Answer Given By Candidate:C

Question ID:481305

Section Name:COMPULSORY

Question:

Order and degree of the differential equation :

$$\left(\frac{d^2y}{dx^2}\right)^{\frac{-3}{2}} = 2\left(\frac{dy}{dx}\right)^{\frac{-1}{3}} \text{ are:}$$

A

$$2, \frac{-3}{2}$$

$$C_{2,9}$$

Answer Given By Candidate:C

Question ID:481306

Section Name: COMPULSORY

Question:

The differential equation representing family of curves $xy^2 = \log y + C$, where C is arbitrary constant, is:

$$\frac{A}{2xy^2}$$

$$\frac{B}{1-2xy^2}$$

$$C \frac{1-y}{2xy^2}$$

$$\frac{1-y^2}{2xy}$$

Answer Given By Candidate: Not Attempted

Question ID:481307

Section Name: COMPULSORY

Question:

The area (in sq. units), above x-axis under the line y = x + 1 and between x = 2 and x = 3 is:

- $A \frac{7}{2}$
- $\begin{array}{cc} \mathbf{B} & \frac{9}{2} \end{array}$
- $\frac{C}{2}$
- $\frac{13}{2}$

Answer Given By Candidate: Not Attempted

Question ID:481308

Section Name: COMPULSORY

Question:

If
$$\int \frac{x^2}{(x+2)^2} e^x dx = e^x f(x) + C$$
, then $f(x)$ is equal to:

$$A \frac{x^2}{(x+2)^2}$$

$$\mathbf{B} \quad \frac{1}{(x+2)}$$

$$\frac{x-2}{x+2}$$

$$\mathbf{D} \quad \frac{x}{(x+2)}$$

Answer Given By Candidate: Not Attempted

Question ID:481309

Section Name: COMPULSORY

Question:

If
$$\int \frac{x^2+7}{(x^2+9)(x^2+5)} dx = \frac{\sqrt{5}}{a} tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + \frac{1}{b} tan^{-1} \left(\frac{x}{3}\right) + C$$
, then the value of $a + b$ is:

A 4

B 8

C 12

D 16

Answer Given By Candidate:A

Question ID:4813010

Section Name: COMPULSORY

Question:

The point(s) on the curve $x^2 + y^2 - 2x - 8 = 0$ at which the tangent(s) is (are) parallel to x-axis is (are):

A $(2, \pm 1)$

B(3,-3)

C $(1, \pm 3)$

D $(0, 2\sqrt{2})$

Answer Given By Candidate:D

Question ID:4813011

Section Name: COMPULSORY

Question:

For the curve
$$\sqrt{x} + \sqrt{y} = 1$$
, $\frac{dy}{dx}$ at $(\frac{1}{4}, \frac{1}{4})$ is:

- $A \frac{1}{2}$
- B 1
- C -1
- D 2

Answer Given By Candidate:A

Question ID:4813012

Section Name:COMPULSORY

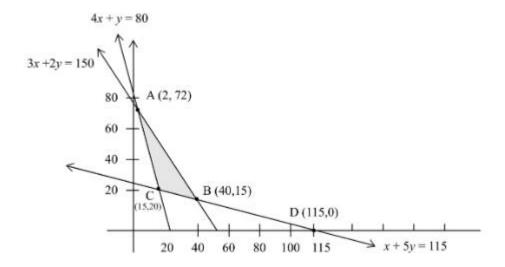
Question:

$$\int_0^1 \frac{dx}{\sqrt{x^2 + 8x + 17}} =$$

$$A \log \left(\frac{5 + \sqrt{26}}{4 + \sqrt{17}} \right)$$

$$\log \left(\frac{4 + \sqrt{17}}{5 + \sqrt{26}} \right)$$

$$\log \left(\frac{1 + \sqrt{17}}{5 + \sqrt{26}} \right)$$


$$\log \left(\frac{1 + \sqrt{26}}{\sqrt{17}} \right)$$

Answer Given By Candidate:D

Question ID:4813013

Section Name: COMPULSORY

The feasible region (shaded area) of LPP with objective function minimum (z) = 2x + 10y is as shown in the figure below.

The optimal solution is at:

- A Point B only
- B Point Conly
- C Both B and C
- D All points on the line segment BC

Answer Given By Candidate:D

Question ID:4813014

Section Name: COMPULSORY

Question:

Let A be a square matrix of size 4 and |A| = 4. If $|2 \text{ Adj.}(3A)| = 2^a 3^b$, then a + b is equal to:

- A 10
- B 22
- C 42
- D 64

Answer Given By Candidate: Not Attempted

Question ID:4813015

Section Name:COMPULSORY

Ouestion:

If A is a non-singular matrix of order 3, and $A^2 = 3A$, then the value of |A| is:

- A -3
- B 3
- \mathbf{C}

D 27

Answer Given By Candidate:C

Question ID:4813051

Section Name:MATHEMATICS CORE

Question:

If $\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$, then $\cot^{-1} x + \cot^{-1} y$ equals to:

- \mathbf{A} π
- $B 2\pi$

Answer Given By Candidate:C

Question ID:4813052

Section Name:MATHEMATICS CORE

Question:

The principal value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$ is equal to:

- A

Answer Given By Candidate:B

Question ID:4813053

Section Name:MATHEMATICS CORE

Question:

The range of the function $x^2 + x + 1$, $x \in \mathbb{R}$ is:

- $A \left[\frac{3}{4}, \infty\right)$
- B [1,∞)

$$\left(\frac{1}{\sqrt{2}},\infty\right)$$

D
$$(\sqrt{2}, \infty)$$

Answer Given By Candidate: Not Attempted

Question ID:4813054

Section Name:MATHEMATICS CORE

Ouestion:

Let
$$f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$$
 and $g: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3\}$ defined as $f(1) = 1, f(2) = 2, f(3) = f(4) = 3, g(1) = 1, g(2) = 2$ and $g(3) = g(4) = 3$.

- A f is onto
- B g is one-one
- C fog is not one-one
- D f is one-one

Answer Given By Candidate: Not Attempted

Question ID:4813055

Section Name:MATHEMATICS CORE

Question:

In function $f: A \to B$, n(A) = 3 and n(B) = 5, then number of injective functions from set A to set B is:

- A 6
- B 60
- C = 120
- D 125

Answer Given By Candidate:B

Question ID:4813056

Section Name:MATHEMATICS CORE

Ouestion:

If A₁ and A₂ are two partitions of the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, such that

$$A_1 - A_2 = \frac{\pi ab}{4}$$
, then value of A_2 is:

- A 0.625 πab
- B 0.75 πab
- C 0.35 πab
- D 0.375 πab

Answer Given By Candidate: Not Attempted

Question ID:4813057

Section Name:MATHEMATICS CORE

Question:

If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ and n is positive integer then A^n , $(n \in N)$, is equal to:

- $\mathbf{A} \begin{bmatrix} 1 & na \\ 0 & 1 \end{bmatrix}$
- $\mathbf{B} \begin{bmatrix} 1 & na \\ 1 & 0 \end{bmatrix}$
- $\begin{array}{ccc}
 \mathbf{C} & \begin{bmatrix} n & na \\ 0 & n \end{bmatrix}
 \end{array}$
- $\begin{array}{c|c}
 \mathbf{D} & \begin{bmatrix} 1 & n^2 a \\ 0 & 1 \end{bmatrix}
 \end{array}$

Answer Given By Candidate: A

Question ID:4813058

Section Name:MATHEMATICS CORE

Question:

If A and B are symmetric matrices of same order, then AB - BA is:

- A Null Matrix
- B Unit Matrix
- C Symmetric Matrix
- D Skew-Symmetric Matrix

Answer Given By Candidate:D

Question ID:4813059

Section Name:MATHEMATICS CORE

Question:

Given $A = \begin{bmatrix} x & z & -5 \\ y & 0 & 9 \\ 5 & -9 & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x + y + y + 1 = 0

- Zis:
- A (
- B -1
- \mathbf{C} \mathbf{x}
- \mathbf{D}

Answer Given By Candidate:A

Question ID:4813060

Section Name:MATHEMATICS CORE

Question:

If $f(x) = e^x \sin x$, $x \in \left[-\frac{\pi}{2}, 0\right]$, then the value of 'c' in Rolle's theorem is:

- $A = \frac{\pi}{6}$
- $\mathbf{B} \quad -\frac{\pi}{4}$
- C $-\frac{\pi}{8}$
- D $-\frac{\pi}{3}$

Answer Given By Candidate: Not Attempted

Question ID:4813061

Section Name:MATHEMATICS CORE

Question:

The area of the triangle (in sq. units) with vertices (2, 7), (1, 1) and (10, 8) is:

- $\mathbf{A} \quad \frac{75}{2}$
- B 75
- C 47
- $\frac{D}{2}$

Answer Given By Candidate:D

Question ID:4813062

Section Name:MATHEMATICS CORE

Question:

The value of k for which the function $f(x) = \begin{cases} kx^2, & x \le 2\\ 3, & x > 2 \end{cases}$

is always continuous, is:

- $A = \frac{4}{3}$
- $\frac{B}{4}$

 \mathbf{C} 3

D 2

Answer Given By Candidate:C

Question ID:4813063

Section Name:MATHEMATICS CORE

Question:

The range of the function $f(x) = \frac{x}{a} + \frac{b}{x}$, x > 0 where a and b are positive real number, is:

 $A \left[2\sqrt{\frac{b}{a}},\infty\right]$

 $\mathbf{B} \quad \left[\sqrt{\frac{b}{a}}, \infty \right]$

 $C \left(-\sqrt{\frac{b}{a}}, \infty\right)$

 $\mathbf{D} \quad \left(3\sqrt{\frac{b}{a}}, \, \infty\right)$

Answer Given By Candidate: Not Attempted

Question ID:4813064

Section Name:MATHEMATICS CORE

Question:

$$\int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx =$$

 $\frac{A}{\sqrt{tanx}} + C$

 $\frac{\mathbf{B}}{3} \left(\cot x \right)^{\frac{3}{2}} + C$

C $2\sqrt{\tan x} + C$

D $-2\sqrt{\cot x} + C$

Answer Given By Candidate:B

Question ID:4813065

Section Name:MATHEMATICS CORE

Question:

The solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is:

$$y + x = k(1 - xy)$$

$$y + \frac{y^3}{3} = x + \frac{x^3}{3} + C$$

$$\mathbf{C} \quad y = x$$

$$\mathbf{D} \quad x - y = k(1 + xy)$$

Answer Given By Candidate: Not Attempted

Question ID:4813066

Section Name:MATHEMATICS CORE

Question:

Let $\vec{a} = 2\hat{\imath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath} + \hat{k}$ and $\vec{c} = 4\hat{\imath} - 3\hat{\jmath} + 7\hat{k}$ be three vectors. The vector (\vec{r}) satisfying $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$ is:

A
$$\hat{i} - 4\hat{j} - 2\hat{k}$$

B
$$2\hat{\imath} + \hat{\jmath} - 4\hat{k}$$

C
$$\hat{i} + 8\hat{j} + 2\hat{k}$$

$$\mathbf{D} = \hat{\mathbf{i}} - 8\hat{\mathbf{j}} + 2\hat{k}$$

Answer Given By Candidate: Not Attempted

Question ID:4813067

Section Name:MATHEMATICS CORE

Question:

If a fair coin is tossed 10 times, then the probability of getting exactly six heads is:

- A $\frac{105}{512}$
- $\frac{150}{512}$
- $\begin{array}{c} C & 105 \\ \hline 152 \end{array}$
- D $\frac{105}{215}$

Answer Given By Candidate: Not Attempted

Question ID:4813068

If a random variable X has the following probability distribution:

x	0	1	2	3	4	5	6	7
P(X = x)	0	k	2k	2k	3k	k ²	$2k^2$	$7k^2 + k$

Then $P(X \ge 6)$ is:

- A 0.017
- B 0.17
- $\mathbf{C} = 0.1$
- D = 0.71

Answer Given By Candidate: Not Attempted

Question ID:4813069

Section Name:MATHEMATICS CORE

Question:

If
$$P(A) = \frac{6}{11}$$
, $P(B) = \frac{5}{11}$ and $P(A \cup B) = \frac{7}{11}$, then the value of P(A/B) is:

- $A = \frac{5}{6}$
- $\mathbf{B} \quad \frac{4}{7}$
- C 4
- $\begin{array}{cc} \mathbf{D} & \frac{5}{7} \end{array}$

Answer Given By Candidate:C

Question ID:4813070

Which of the following statements is/are correct:

A. For any two events
$$E, F, P(E/F) = \frac{P(E \cap F)}{P(E)}$$
 provided $P(E) \neq 0$

- B. The two events E and F are independent if $P(E \cap F) = P(E).P(F)$
- C. Two events E and F are mutually exclusive if $P(E \cap F) \neq 0$
- D. If E_1 , E_2 are mutually exclusive and exhaustive events associated with a random experiment and let A be any event that occurs with them, then by $P(A/E_1)P(E_1)$

Baye's Theorem
$$P(E_1/A) = \frac{P(A/E_1)P(E_1)}{P(A/E_1)P(E_1) + P(A/E_2)P(E_2)}$$

Choose the correct answer from the options given below:

- A B, C, D only
- B A, B only
- C B, D only
- D A, B, C only

Answer Given By Candidate:A

Question ID:4813071

Section Name:MATHEMATICS CORE

Question:

A, B are independent events such that $P(A) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{12}$, then $P(A' \cap B')$ is equal to:

- $\frac{A}{12}$
- $\frac{1}{2}$
- $\frac{C}{6}$
- D $\frac{1}{4}$

Answer Given By Candidate: Not Attempted

Question ID:4813072

Section Name:MATHEMATICS CORE

Ouestion:

If
$$\vec{a} = -\hat{\imath} - \hat{\jmath} + \hat{k}$$
, $\vec{b} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$, $\vec{c} = \hat{\imath} + 3\hat{\jmath} + 4\hat{k}$, and $\vec{a} \times (\vec{c} \times \vec{b}) = \alpha \vec{b} + \beta \vec{c}$, then $\alpha + \beta$ is equal to:

- A -1
- B-2
- C -3
- D-4

Answer Given By Candidate: A

Question ID:4813073

Section Name:MATHEMATICS CORE

Question:

Corner points of the feasible region for an LPP are (0, 2), (3, 0), (5, 0), (5, 7) and (0, 6). Let z = 4x + 6y be the objective function, then minimum value of z occurs at :

- A (0, 2) only
- B (3, 0) only
- C any point of the line segment joining the points (0, 2) and (3, 0)
- **D** the mid-point of the line segment joining the points (0, 2) and (3, 0) only

Answer Given By Candidate:C

Question ID:4813074

Section Name:MATHEMATICS CORE

Question:

The number of optimal feasible solutions of the LPP given by

Maximize
$$(z) = x + 2y$$

subject to $x + 3y \le 90$
 $x + y \ge 40$
 $x \le y$
 $x \ge 0, y \ge 0$ is:

- A One
- B Two
- C Infinite
- D Zero

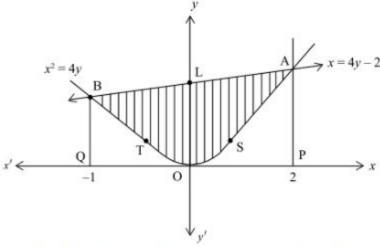
Answer Given By Candidate:B

Question ID:4813075

Section Name: MATHEMATICS CORE

Question:

The direction ratio's of the line of intersection of two planes x + y + z + 1 = 0 and 3x + 2y + 4z - 9 = 0, are:


- A <1, 1, 1>
- B <3, 2, 4>

$$C <2, -1, -1>$$

Answer Given By Candidate:B

Passage:

Anaihta designs an open air honeybee nest on the branch of a tree, whose crosssection by a vertical plane is parabolic and the branch of the tree is given by a straight line AB as shown in the figure.

Based on the above information, answer the following.

Question ID:4813076

Section Name:MATHEMATICS CORE

Question:

The points of intersection of the parabola and the line are

A
$$(2,1), \left(-1, \frac{1}{4}\right)$$

$$(2,-1), (1,\frac{1}{4})$$

$$\left(\frac{1}{2},1\right), \left(\frac{1}{4},-1\right)$$

$$(1,2), \left(\frac{1}{4}, -1\right)$$

Answer Given By Candidate:A

Question ID:4813077

The area of the trapezium ABQP is:

- A $\frac{15}{16}$ sq. units
- B $\frac{15}{8}$ sq. units
- C $\frac{8}{15}$ sq. units
- D $\frac{8}{9}$ sq. units

Answer Given By Candidate: Not Attempted

Question ID:4813078

Section Name:MATHEMATICS CORE

Question:

The area of the shaded region in the given figure is:

- A $\frac{33}{16}$ sq. units
- B $\frac{8}{9}$ sq. units
- C $\frac{9}{8}$ sq. units
- D $\frac{16}{33}$ sq. units

Answer Given By Candidate:C

Question ID:4813079

Section Name:MATHEMATICS CORE

Question:

The slope of the tangent curve $x^2 = 4y$ at A is:

- A 1
- B -1
- $C \frac{1}{2}$
- $D = \frac{1}{2}$

Answer Given By Candidate:A

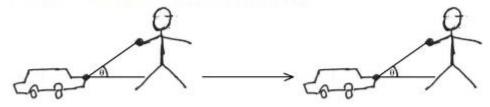
Ouestion ID:4813080

The area of the region OPASO is:

A
$$\frac{9}{8}$$
 sq. units

B
$$\frac{1}{4}$$
 sq. units

C
$$\frac{2}{3}$$
 sq. units


D
$$\frac{7}{8}$$
 sq. units

Answer Given By Candidate: Not Attempted

Passage:

A baby boy is playing with his toy car. The car is attached with a rope or a string. The boy is pulling the rope and playing with it. If the car is moving in a horizontal line which is represented by $\frac{x-1}{1} = \frac{y+4}{-2} = \frac{z}{0}$ and the rope is represented by line

 $\vec{r} = 12\hat{\imath} + 3\hat{\jmath} - 4\hat{k} + \lambda(-5\hat{\imath} + 12\hat{k})$, then answer the following questions which is based on the above information.

Based on the above information, answer the following.

Question ID:4813081

Section Name:MATHEMATICS CORE

Ouestion:

The vector form of the line in which the car is moving is:

A
$$\vec{r} = (12\hat{\imath} - 4\hat{\jmath}) + \mu(6\hat{\imath} - 6\hat{\jmath})$$

B
$$\vec{r} = (-2\hat{\imath} + 4\hat{\jmath}) + \mu(6\hat{\imath} + 6\hat{\jmath})$$

C
$$\vec{r} = (\hat{\imath} - 4\hat{\jmath}) + \mu(\hat{\imath} - 2\hat{\jmath})$$

D
$$\vec{r} = (\hat{\imath} - 4\hat{\jmath} + 6\hat{k}) + \mu(-3\hat{\imath} + 6\hat{\jmath})$$

Answer Given By Candidate:C

Question ID:4813082

The direction ratio's of the line in which car is moving is given by:

$$B < -1, 2, 1 >$$

$$C \le 1, -2, 0 >$$

Answer Given By Candidate:C

Question ID:4813083

Section Name:MATHEMATICS CORE

Question:

The direction cosines of the line (rope) is given by:

$$\frac{A}{\sqrt{13}} < \frac{12}{13}, \frac{3}{13}, \frac{-4}{13} >$$

$$\frac{\mathbf{B}}{4} < \frac{-12}{13}, \frac{-3}{13}, \frac{4}{13} > \frac{1}{13}$$

$$C < \frac{5}{13}, 0, \frac{12}{13} >$$

$$\frac{D}{\sqrt{13}} < \frac{-5}{13}, 0, \frac{12}{13} >$$

Answer Given By Candidate:**D**

Question ID:4813084

Section Name:MATHEMATICS CORE

Ouestion:

The acute angle between the line (rope) and the line in which the car is moving is given by:

A
$$cos^{-1}\left(\frac{3}{39}\right)$$

$$^{\mathbf{B}} \quad \cos^{-1}\left(\frac{5\sqrt{5}}{39}\right)$$

$$c$$
 $cos^{-1}\left(\frac{15}{39}\right)$

D
$$cos^{-1}\left(\frac{\sqrt{5}}{13}\right)$$

9/10/22, 1:15 PM NTA

Answer Given By Candidate: Not Attempted

Question ID:4813085

Section Name: MATHEMATICS CORE

Question:

If the boy is pulling a car at a speed of 1.6 m/s then distance moved by the car in 10 seconds is:

A 1.6 m

B 16 m

C 160 m

D 0.16 m

Answer Given By Candidate:B